| 
  鲜花(53 )   鸡蛋(0 ) | 
This can by done by Induction
| Show that for all integers  n >1, n^3 - n  can be divided by 3.   (Note: n^3 stands for n*n*n)) s; k! N+ K) z" `' e & Y& C  c# g7 A- ]3 J
 Proof:
 ! p* `0 j0 Y7 \& F1 n1 _Let n >1 be an integer
 + I# h6 v; ]7 i+ c* x8 n+ }4 EBasis:   (n=2)/ }" d; P1 U7 S; @7 B
 2^3 - 2 = 2*2*2 –2 = 6 which can be divided by 3
 & A4 T5 Y2 e4 h" n0 a6 c8 H
 , ^; N6 l; H% U* V2 m" JInduction Hypothesis: Let K >=2 be integers, support that
 * G4 V7 B' Y6 ^9 \  g                                     K^3 – K can by divided by 3.
 , P! ^5 W) Z% ~& N1 Z+ }6 C
 3 x! q' H9 v% g, d( h; HNow, we need to show that ( K+1)^3 - ( K+1) can be divided by 3/ C4 ^+ X/ d5 ?, u' l( P
 since we have  (K+1)^3  =  K^3 +3K^2 + 3K +1 by Binomial Theorem
 9 @) z3 Q7 w6 Q, G& [Then we have (K+1)^3 – ( K+1) =   K^3 +3K^2 + 3K +1 –(K+1)$ O+ Y  F2 }3 k  z4 e6 e
 = K^3 + 3K^2 + 2K
 + L! o1 {, y4 d                                     = ( K^3 – K)  + ( 3K^2 + 3K)
 5 J5 x$ l: A0 U' J* y; k; @                                     = ( K^3 – K)  + 3 ( K^2 + K)
 / ~: s& O$ s; y: Y7 s, z- iby Induction Hypothesis, we know that   k^3 – k  can by divided by 3 which means that k^3 – k  = 3 X for some integer X>07 l# n5 h8 R. M/ H- u2 w
 So we have (K+1)^3 – ( K+1) = ( K^3 – K)  + 3 ( K^2 + K)
 3 ~0 u) [6 C& a. P, f                                = 3X + 3 ( K^2 + K)
 4 F% x  c4 R( z& q0 v  w                                = 3(X+ K^2 + K)  which can be divided by 3
 6 X& n: s% x) k! I) t+ z# W+ r( a8 V# M3 k) g; E$ s# U
 Conclusion: By the Principle of Mathematics Induction, n^3 - n can be divided by 3 For all integers  n >1.
 : X9 @/ P* U8 V- g: z) F6 \9 _/ M6 q  o- \3 }* ?! C) Q
 [ Last edited by 悟空 on 2005-2-23 at 10:06 AM ]
 | 
 |