 鲜花( 19)  鸡蛋( 0)
|
Solution:
2 T7 r# z! C$ S$ ~' Q
$ g' G j8 h9 @' ^! l+ iFrom: d{(a+bx)*C(x)}/dx =-k C(x) + s
. F8 J2 W: @& t. J& N2 @so:& W y' z4 D& m4 d! d7 l& o
: T A% _% M ~; u& ^/ abC(x) + (a+bx) dC(x)/dx = -kC(x) +s9 F# I0 k* U& a' j
i.e.; E8 j! m j4 M$ x, m: q
8 q# }. ^, |9 L# n# _2 x1 w(a+bx) dC(x)/dx = -(k+b)C(x) +s
" W2 _2 h" T, B$ ~) n) u* `3 k/ k5 R( B( n8 O1 L5 B% Z
% E4 h' @/ }! W/ C! J
introduce a tranform: KC(x)+s =Y(x), where K=-(k+b)
4 w; V# E a8 k; Qwhich means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx: @7 O/ ^0 E/ K/ V. i# x
therefore:, D {; ~0 ?' }- r$ ?
2 m5 g$ C6 l, \ d
{(a+bx)/K} dY(x)/dx=Y(x)2 u' K2 F+ f! j
$ Q# R% U6 p. @
from here, we can get:3 a+ m4 K. q$ \$ k
* p, G% W2 z1 X* U8 PdY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = K/b {(a+bx)}d(a+bx). f% D/ U c- Z9 O6 W7 Q0 q
8 ~) k" H% _) ]' Z1 S0 O
so that: ln Y(x) =( K/b) ln(a+bx)" Y& \. h& B/ O3 Z$ C$ I+ g1 V
& Z+ t! g6 B1 bthis means: Y(x) = (a+bx)^(K/b)* f9 T1 O! ~/ c# v# M
by using early transform, we can have:
( ~* G7 L9 ~! [: q( K. z4 Z* d4 f. A/ q8 \
-(k+b)C(x)+s = (a+bx)^(k/b+1)6 s( L( b: ]) a t* }2 Q
' o: \4 v2 E2 ? Z: Y
finally:/ u& J6 b& G9 t4 u7 b
3 Y) x' G. s2 @, ?, b3 O4 |. B
C(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|