 鲜花( 0)  鸡蛋( 0)
|
Suppose Intr is annually compounded
& l/ @/ |3 E* D4 [( [+ D4 N Month 0 Mon. 8 Mon. 122 q8 }* T" k& A- \: i$ j5 Z( Y) `5 Y
Cash Principal X -750 -950
0 h' R k( B: [8 j. a+ HCash Intr (Should Pay) -X*9.5%*8/12 -(X-750)*9.5%*4/12
n. X- b2 H% @9 L" }PV at mon 0 X -[750+X*9.5%*8/12] -[950+(X-750)*9.5%*4/12]7 [: A. N& L. ~% O& l+ g
/(1+7.75%*8/12) /(1+7.75%*12/12)
, o8 c8 j) e- d, D* V, f' {# q: a4 h" Q& Z P
these 3 should add up to 0, i.e. NPV at month 0 is 0.
/ x2 H$ F, U8 `5 L, `
5 y4 ]5 h" v3 ~0 z3 A/ ?7 x) SConclusion X = 1729.8
7 w' f% q) M$ y5 \ & U# w0 O9 k, U# ?1 B
So, Initial borrowing was 1730 *(1+7.5%) 1859.5 approx. $1,860
/ B3 D( t" A1 \8 {0 n8 q0 O" t: E |
|