 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal 2 b' D8 G- d5 E0 F9 ]: Z+ k% m1 z" R' ?! f
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then $ l! c3 Q( O. D! K8 { f
# ]5 k$ _6 ?' W, Y: ma + b = t2 ^! Y, D7 r' K9 \
(a + b)(a - b) = t(a - b)$ n; d1 A+ S8 v1 I6 g
a^2 - b^2 = ta - tb/ A9 u5 V$ C5 b5 ^! t& }4 `
a^2 - ta = b^2 - tb1 f* v+ \4 a0 R' s
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/42 [+ k8 C+ t" y: f) W
(a - t/2)^2 = (b - t/2)^27 q) ]" I/ `/ F) b, y' F3 F- c# P
a - t/2 = b - t/2
5 T! q( W" ^0 B& \: }a = b ) G; F# ?4 v3 b- b4 H/ d
' I# E* B, r- u. v& a7 r4 B+ WSo all numbers are the same, and math is pointless. |
|