 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal 2 q" M; r* v& ?+ q
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then
4 \* v9 F. { J+ r& E+ m+ `9 j8 @' `2 c/ F5 a( i) x0 Y
a + b = t
+ i3 ?3 m$ V" W3 L% e(a + b)(a - b) = t(a - b)9 f ~9 ?" P! n# o( W9 T3 t+ O2 {5 Z
a^2 - b^2 = ta - tb0 a" j1 E9 p6 R! E5 D5 x5 y
a^2 - ta = b^2 - tb" C- h: K4 \, D% _8 ?3 q% U
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
, Z, @/ i% v: R(a - t/2)^2 = (b - t/2)^2
- S- x8 n; T$ z5 ]( Na - t/2 = b - t/2
! f! O O( r; b; Sa = b ( V( I7 _* q9 ^' ?
1 o$ I, Z& d" G9 i
So all numbers are the same, and math is pointless. |
|