All Numbers Are Equal ! D7 v" r$ D) g9 D
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 8 ]+ p' ^& P% P( {# m' q8 k$ B: S6 n6 L% D: R7 v7 R6 Y2 X! J
a + b = t6 o5 M# W& Z+ u2 [
(a + b)(a - b) = t(a - b) + p; L. f! @1 za^2 - b^2 = ta - tb) I) k" z+ S4 r& g0 a# F
a^2 - ta = b^2 - tb9 e6 d/ g3 y) h! J
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4% n H( A( F- g B5 s
(a - t/2)^2 = (b - t/2)^20 |/ y4 j0 f- P L
a - t/2 = b - t/25 C. k. b' S( P/ F
a = b 3 _& l" m0 e7 p# S
8 e5 p- g* h* r' r& r" E
So all numbers are the same, and math is pointless.