 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal
% Q" }& _, R& K( M, TTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then $ Q" k" M3 z/ k
% o2 f$ s. {, T3 q$ M& ba + b = t& o4 l9 `6 \; ]
(a + b)(a - b) = t(a - b)4 B/ I( V" v3 H: _
a^2 - b^2 = ta - tb* h% X; X: u6 U1 J- X
a^2 - ta = b^2 - tb- d" L6 S _/ @& x# x9 @# S' d9 l) r5 x
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/42 W5 ]7 {1 H; W$ f* ~7 Q
(a - t/2)^2 = (b - t/2)^2
9 i7 z: \4 G/ {! r, @! Na - t/2 = b - t/2
' `" N8 q) h0 l1 \7 t+ \( ta = b " ~! H, M. c* }8 h% F9 X" S( L
- T, Y# f# d$ `$ ]: `
So all numbers are the same, and math is pointless. |
|