 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal - @# K1 k m6 N
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 5 k" g* ~# I: ~3 t5 o( _! D* g/ k2 \
1 y6 f4 b9 K2 c: P: y
a + b = t5 [, ~$ z7 Q, c& }* w- L7 T
(a + b)(a - b) = t(a - b)8 ]5 Z1 W. e# a5 b% c6 W9 b
a^2 - b^2 = ta - tb
( F2 N: O' k) m1 G+ _7 ?a^2 - ta = b^2 - tb* q; p- C5 K& b% L; X- R5 ^( m9 r, g
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4) h) t0 c9 X: h
(a - t/2)^2 = (b - t/2)^2" U0 O8 z$ A1 O2 l$ R
a - t/2 = b - t/2* U+ M0 a% W# m1 e4 p
a = b 7 O* \" ~% R7 V# B0 J& s
5 Q5 B' r: M! l* [' P4 V: V6 ~
So all numbers are the same, and math is pointless. |
|