All Numbers Are Equal / ~0 N6 R/ V2 j1 j9 G5 o STheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 3 f* g- {1 S5 H( D5 l ( A6 G; r. x& T' N* h9 \( Na + b = t; a" L% d( B4 ^: p
(a + b)(a - b) = t(a - b)- i" C e5 H0 r4 u1 d
a^2 - b^2 = ta - tb & L( V+ u Y/ Ja^2 - ta = b^2 - tb 6 X: X& b1 O+ ?% d% ja^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4& W1 P/ v) s! ^8 O7 }) E" ?
(a - t/2)^2 = (b - t/2)^2 + o! e7 Z5 m/ k# M" p4 `a - t/2 = b - t/26 R' G5 \+ t) N! b N7 S( A: O
a = b $ L" [5 q( |3 w3 A
2 u1 ?% n5 n6 f' q6 Q# R8 { |
So all numbers are the same, and math is pointless.